(单词翻译:单击)
How animals perceive time
动物如何感知时间?
Slo-mo mojo
慢动作的魔力
Small creatures with fast metabolisms see the world like an action replay
小生物可能拥有快速代谢系统,眼中的世界就想慢动作回放
Sep 21st 2013 |From the print edition
FLIES live shorter lives than elephants. Of that there is no doubt. But from a fly’s point of view, does its life actually seem that much shorter? This, in essence, was the question asked by Kevin Healy of Trinity College, Dublin, in a paper just published in Animal Behaviour. His answer is, possibly not.
苍蝇的寿命比大象短
Subjective experience of time is just that—subjective. Even individual people, who can compare notes by talking to one another, cannot know for certain that their own experience coincides with that of others. But an objective measure which probably correlates with subjective experience does exist. It is called the critical flicker-fusion frequency, or CFF, and it is the lowest frequency at which a flickering light appears to be a constant source of illumination. It measures, in other words, how fast an animal’s eyes can refresh an image and thus process information.
对时间的主观经验就是主观的
For people, the average CFF is 60 hertz (ie, 60 times a second). This is why the refresh-rate on a television screen is usually set at that value. Dogs have a CFF of 80Hz, which is probably why they do not seem to like watching television. To a dog a TV programme looks like a series of rapidly changing stills.
对人类来说,平均的CFF是60赫兹(即,每秒六十次)
Having the highest possible CFF would carry biological advantages, because it would allow faster reaction to threats and opportunities. Flies, which have a CFF of 250Hz, are notoriously difficult to swat. A rolled up newspaper that seems to a human to be moving rapidly appears to them to be travelling through treacle.
有最快速的CFF会拥有生物学优势,因为这意味着面对威胁或者机会时会有更快的反应速度
Mr Healy reasoned that the main constraints on an animal’s CFF are its size and its metabolic rate. Being small means signals have less far to travel in the brain. A high metabolic rate means more energy is available to process them. A literature search, however, showed that no one had previously looked into the question.
Healy先生推断,动物CFF的主要限制来自于其体型及其新陈代谢速度
Fortunately for Mr Healy, this search also showed that plenty of people had looked at CFF in lots of species for other reasons. Similarly, many other people had looked at the metabolic rates of many of the same species. And size data for species are ubiquitous. All he had to do, therefore, was correlate and repurpose these results. Which he did.
幸运的是,对Healy先生来说,很多人为了别的原因也研究了许多物种的CFF
To simplify matters he looked only at vertebrates—34 species of them. At the bottom end of the scale was the European eel, with a CFF of 14Hz. It was closely followed by the leatherback turtle, at 15Hz. Tuataras clocked in at 46Hz. Hammerhead sharks tied with humans, at 60Hz, and yellowfin tuna tied with dogs at 80Hz. The top spot was occupied by the golden-mantled ground squirrel, at 120Hz. And when Mr Healy plotted his accumulated CFF data against both size and metabolic rate (which are not, it must be admitted, independent variables, as small animals tend to have higher metabolic rates than large ones), he found exactly the correlations he had predicted.
为了简化问题,他只看34种脊柱动物
The upshot is that his hypothesis—that evolution pushes animals to see the world in the slowest motion possible—looks correct. Flies may seem short-lived to people, but from a dipteran point of view they can thus live to a ripe old age. Remember that next time you try (and fail) to swat one.
他的假设是进化可能让动物更慢的速度看世界,结果看起来这个假设是对的