日期:2012-08-13 22:22


Science and technology.
A fab result.
A novel way of making computer memories, using bacteria.
FOR half a century, the essence of progress in the computer industry has been to do more with less. Moore's law famously observes that the number of transistors which can be crammed into a given space doubles every 18 months. The amount of data that can be stored has grown at a similar rate. Yet as components get smaller, making them gets harder and more expensive. On May 10th Paul Otellini, the boss of Intel, a big American chipmaker, put the price of a new chip factory (known as a fab) at around $10 billion.
半个世纪以来,计算机产业发展的本质就是花钱更少,成事更多。摩尔定律的著名论断是:能够放入某空间内的晶体管数量每18个月翻一番。。储存的数据也有着类似的增长速率,但是随着部件越来越小,它们的制造难度和成本也逐渐增加。5月10日,美国芯片巨头因特尔总裁兼CEOPaul Otellini宣布将花费上百亿美元建设新工厂。
Happily for those that lack Intel's resources, there may be a cheaper option-namely to mimic Mother Nature, who has been building tiny devices, in the form of living cells and their components, for billions of years, and has thus got rather good at it. A paper published in Small, a nanotechnology journal, sets out the latest example of the technique. In it, a group of researchers led by Sarah Staniland at the University of Leeds, in Britain, describe using naturally occurring proteins to make arrays of tiny magnets, similar to those employed to store information in disk drives.
对于不像因特尔那么有钱的厂家的好消息是,他们或许可以选择更便宜的方式——模拟大自然。对于大自然来说,她建造微小"设备"已经有数十亿年了,所以自然是信手拈来,当然,这些"设备"都是以活细胞和其组份的形式呈现。发表在纳米技术期刊《微小》的一篇论文描述了这一新技术的示例,该技术团队由英国利兹大学的Sarah Staniland领导,他们用自然生成的蛋白质让微型磁性材料进行排列,这与磁盘驱动器上储存信息的磁性材料排序是类似的。
The researchers took their inspiration from Magnetospirillum magneticum, a bacterium that is sensitive to the Earth's magnetic field thanks to the presence within its cells of flecks of magnetite, a form of iron oxide. Previous work has isolated the protein that makes these miniature compasses. Using genetic engineering, the team managed to persuade a different bacterium-Escherichia coli, a ubiquitous critter that is a workhorse of biotechnology-to manufacture this protein in bulk.
Next, they imprinted a block of gold with a microscopic chessboard pattern of chemicals. Half the squares contained anchoring points for the protein. The other half were left untreated as controls. They then dipped the gold into a solution containing the protein, allowing it to bind to the treated squares, and dunked the whole lot into a heated solution of iron salts. After that, they examined the results with an electron microscope. Sure enough, groups of magnetite grains had materialised on the treated squares, shepherded into place by the bacterial protein. In principle, each of these magnetic domains could store the "one" or the "zero" of a bit of information, according to how it was polarised.
Getting from there to a real computer memory would be a long road. For a start, the grains of magnetite are not strong enough magnets to make a useful memory, and the size of each domain (20 microns across) is huge by modern computing standards. But Dr Staniland reckons that, with enough tweaking, both of these objections could be dealt with.
The advantage of this approach is that it might not be so capital-intensive as building a fab. Growing things does not need as much kit as making them. If the tweaking could be done, therefore, the result might give the word "biotechnology" a whole new meaning.

  • drivesn. 驱动器;驱动力;驱动程序(drive的复数形式)
  • techniquen. 技术,技巧,技能
  • essencen. 本质,精髓,要素,香精
  • inspirationn. 灵感,吸入,鼓舞人心(的东西)
  • miniaturen. 缩图,小画像 adj. 小型的
  • presencen. 出席,到场,存在 n. 仪态,风度
  • microscopicadj. 显微镜的,极小的,微观的
  • persuadevt. 说服,劝说
  • describevt. 描述,画(尤指几何图形),说成
  • untreatedadj. 未经治疗的;未经处理的