科学美国人60秒:细菌可以对抗新型抗生素
日期:2017-11-10 11:53

(单词翻译:单击)

E~xsC].!98[WJWLc&y&swKSbhWWQrM;MGJ_a|E

听力文本

Quo@47d=ecYnJ41A]xkg

This is Scientific American — 60-Second Science. I'm Christopher Intagliata.
Perhaps the chief poster child of antibiotic resistance is methicillin-resistant Staphylococcus aureus, or MRSA. The bacterium is impervious to a suite of antibiotics, and can cause blood infections, pneumonia...even death. And you'd assume that it developed its namesake resistance to methicillin...by being exposed to methicillin.
But that doesn't seem to be the case. Instead, the culprit for resistance appears to be an earlier, and chemically related antibiotic: penicillin. "We think it's a very early use of penicillin that forced the strains to pick up these mechanisms." Matthew Holden, a molecular microbiologist at the University of Saint Andrews in Scotland.
Holden and his team analyzed the genomes of freeze-dried strains of MRSA bacteria, from the 1960s to the '80s. "In effect what we were doing was sort of genomic archaeology, in looking at the genomes, and comparing the variation and using that information to effectively reconstruct the evolutionary histories."

%ZD;;Fbt8|hieTV

抗生素.jpg
What they found was that the Staph bacteria seem to have acquired the methicillin-resistance gene in the mid-1940s—about 15 years before methicillin even hit the market. And they determined that it was the widespread use of penicillin that led to that adaptation. The results are in the journal Genome Biology.
Methicillin was introduced in the U.K. in 1959. Less than a year later, resistance was first reported—resistance that it appears now was already baked into the staph strains. Looking ahead, Holden says we'd do well to vigilantly monitor the genetics of circulating strains—to find out which bugs may be armed to battle our newest antibiotics as soon as they're developed.
Thanks for listening for Scientific American — 60-Second Science Science. I'm Christopher Intagliata.

SaT0oAXW@xIb=BUC#-

2XFj)W%PA,t

参考译文

C9W)CS7Hi=9eAme%#Y8

这里是科学美国人——60秒科学]w4N7LJ=6GkT。我是克里斯托弗·因塔利亚塔mTKRt7%f|F4p
可能抗生素耐药性的主要代表就是耐甲氧西林金黄色葡萄球菌,简称MRSAl_%9guQDKxDpM。这种细菌不受一系列抗生素的影响,而且它能引发血液感染、肺炎……甚至是死亡Ws~v(6|g2Lh。你可能会认为它接触甲氧西林后,发展出了同名的抗甲氧西林耐药性hODmn_9Ny-l5TmnNR&
但事实似乎并非如此8^]~SJka.rQ~MgH4S3zB。相反,耐药性的来源似乎是更早的、与化学相关的抗生素:青霉素I,pYX%v;JC25TKnV,aDr。“我们认为较早使用青霉素迫使菌株获得了这些机制M*fZmV-S#%Z_srYgb。”苏格兰圣安德鲁斯大学的分子微生物学家马修·霍顿说道Gs5Aei#k.=LWyYGEXI;
霍顿和他的团队分析了20世纪60年代到80年代经过冷冻干燥处理的MRSA菌株基因组K|;HcwRY8bt*No。“实际上,我们的工作有点像基因组考古,就是研究基因组,比较基因变异,然后利用这些信息有效地重建基因进化史vr47Dpv|+g+FQTBlv*p+。”
他们发现,葡萄球菌似乎在20世纪40年代中期获得了“抗甲氧西林耐药性”基因,这一时间比甲氧西林问世早了15年K23oRmM8@)9sfv]XTzg。他们断定是青霉素的广泛使用导致了细菌适应性wlV0~HpC^#U9S,fk。这项研究结果发表在《基因生物学》期刊上=,y,S-mgc%
英国于1959年引入甲氧西林zrZRIBmR3-&~sepj。不到一年时间,甲氧西林的耐药性就被首次报道,现在这种耐药性好像已经进入了葡萄球菌菌株了PpfWfXHrAwFL+t。展望未来,霍顿表示,我们将认真密切监视流通菌株的基因遗传,以找到基因漏洞,看哪些漏洞可能在最新型抗生素被研发出来时,就武装起来进行反抗fHLy-(z+!15#3^[o8
谢谢大家收听科学美国人——60秒科学dc#T32oa1@s[ev&。我是克里斯托弗·因塔利亚塔gNRCwBLjZIn!Ggfa

Z1dTDS(3,2[~^*&

译文为可可英语翻译,未经授权请勿转载!

^ZANZ&u^MwV

y965sLCWT!

重点讲解

KQ5k!5voh_JXKK^rnB

VK-uP]0V%xI-lRzt&17

重点讲解:
1. be impervious to 无动于衷的;不受影响的;
例句:They are impervious to heat and magnetism.
它们完全不受热和磁场的影响IoZcxN~@lp
2. a suite of 一系列;一套;
例句:He has composed a suite of music for the film.
他为该电影配写了一套乐曲(0ImRtK=zXpnhsmYtZIB
3. pick up (不费力地)获得,学会;
例句:It is not just a little trick you can pick up in half an hour.
这不是你半个小时就能学会的小窍门h;wu8jOqG2M79~AFf
4. in effect 其实;实际上;
例句:Interest rates are in effect zero, which puts a new perspective on prices.
利率目前实际上为零,这使得人们对物价产生了新的视角N&90|m;,6LSky
5. look ahead 展望未来;规划未来;
例句:Now I can remember without mourning, and begin to look ahead.
如今回首往事我已不再感到悲痛,并且开始展望将来vrl,xF4UD*4IIi

%pRQH(Qp8ObQ

)5pz-(yhnKbxJ9zlHh2J]4Y^5UjAo@c5RL0
分享到