(单词翻译:单击)
V1:
第一段:金星大气环境比较干燥,成分分析显示没有氢元素,推测可能escapeupright。
第二段:金星、地球等太阳系的行星在形成之初都应该与太阳周围大气成分类似,如果没有成分escape,那么现在仍将相同,但是不同,即说明是有escape。
第三段:较轻的元素escape后,留下相对质量较重的成分对于该星球表面的组成元素有什么影响之类的
考古 未确认 目测一致
V1:最长的 就说为什么金星上面那么干呀?是因为她大气层会Hydrogen。但是呢这个gas里面有其他物质的,这个物质的质量还是密度是妨碍他一起蒸发出大气层的,所以从大气层里面有没有残留这种物质可以看出来,这个gas是不是蒸发掉了
第二段很短,就说太阳系里面很多星球包括地球 火星都是这样的,都会Hydrogen
第三段我这里全highlight。囧。非常长,说因为金星里太阳太近了,吃辐射吃的多,hydro的活动和地球不大一样的,(此处问为什么要说和地 球不一样),然后就分析因为太阳辐射对他那个hydro的影响,好像也是在说二氧化碳存在在gas里面,然后hydro的时候就有情况了,很复杂,我不 才,看得不是很懂
V2:
p1什么是氢元素逃逸,现象是什么
p2地球火星和金星虽然都是由太阳幸运演变而来,但是同位素测定表明三者的大气成分和太阳不一样,说明都发生过氢元素逃逸
p3讲金星的大气,具体内容忘了
V3:
第一段:Venus这个星球,由于离太阳近,造成Hydrogen脱离其地心引力往外扩散,造成其大气层变大,Hydrogen跑了,留下了全是一些相对较重的气体
第二段: 重点考了2到题,比较E,M,V三星球的大气构成和太阳的关系,说如果不是Hydrogen往外跑,早期的Earth和Venus都应该和太阳还有同样的大气构成成分。
第三段:一道题,一个新科学家提出了新的观察方法,然后忘记了。
V4:
第一段,讲氢元素因为重力要跑啊,讲了下他跑的原因。第二段就提到地球,金星了,哦里面提到了二氧化碳因为重 所以会掉下来。第三段就讲地球和金星很相似的啊(有题,问为什么要提到地球和金星相似,答案是为了说明地球要分解二氧化碳,)由于二氧化碳掉掉下来了,但是金星上不能分解,所以不能下雨,所以就变成现在金星这个鬼样子了。
问题:1问为什么要提到地球和金星相似2文章主旨是啥
V5:
第一段:讲一种理论,关于气体从星球逃逸,说轻的气体因为不容易受到引力的影响,在大气层中容易飞出来,尤其是氢气,并且飞出来的时候可能带出来一些其他的分子(有细节题).然后重的分子就会留在大气层里面,所以看大气层 的分子构成就知道有没有气体逃逸。
第二段:地球,火星,金星三个星球如果没有大气层分子逃逸,大气的构成应该和太阳一样,但是他们不一样,所以必然有气体逃逸了
第三段:金星的气体构成到底是什么样子,而且为什么,说了因为它离太阳近,氢气跑了,但是水蒸汽留在空气中,而太阳的辐射又让水分子分解了,分解掉的部分留在空气中,这就造成了金星的dense 大气层。
V6:
第三段:金星和地球的大气是很像的。但是为什么金星干,地球不干呢?因为金星离太阳近,氢元素由于太轻,阳光哗啦哗啦的照射使得氢元素逃离了大气层,而氢元素是水H2O的组成部分啊,所以水就没了;另外没有逃逸的剩下的都是重的气体,比如CO2,这是种温室气体,会使得温度升高,这进一步加剧了氢元素 的逃逸,另外,由于没有H就没有降水,而水是可以吸收CO2的,没有水自然不能像地球那样把CO2存到地里。。。总之就是H逃逸以及一些列并发症导致金星 大气干。。。
考古Q&A:
1:hydro的活动和地球不大一样的,(此处问为什么要说和地球不一样)
2:第三段全部高亮!不过实话是真看不懂。。好像有一个问二氧化碳的,没看明白。。。
3: 为什么说Venus和Earth像:glacieryue选A,为了说明存在氢元素逃逸;jV42 选的是为以后的论述提供背景(context) [作者语录:不敢苟同原来的“为了论述氢元素逃逸”,因为这句话没记错的话应该是最后一段第一句,但这段除了这句话以后都在论述金星和地球不一样(金星的氢元素会逃逸),我不认为这句话可以支持后面的论述,只能说提供个背景]
4:有题问作者用什么证据证明Mars(或是什么别的星球)是存在氢逃逸的,定位在文章第二段。
5:哪个关于火星的陈述是正确的:跟太阳的大气不一样
6-8: 问知道金星氢逃逸能干啥;从题目论述得知对火星的叙述那个对;还有一个是怎么判断逃逸
9:说地球、火星和金星大气中不同同位素的abundance和太阳差别很大,以此说明地、火、金都发生了逃逸,这里我考了两个题
10:主旨:金星大气之所以这么干是因为氢元素逃逸
11:为什么金星大气这么干:All of the Above! (其他感觉都不全,都在论述过程和方法)(Golden:经典必选答案)
12:gitarrelieber730 V37 作者提供什么作为证据来证明hydrodynamics的存在:大气中同位素的含量
背景知识:
Author: Mark A. Bullock and DavidH.Grinspoon
THE STUNNING DIFFERENCES betweenthe climates of Earth and Venus today areintimately linked to the history ofwater on these two worlds. Liquid water isthe intermediary in reactions ofcarbon dioxide and surface rocks that can formminerals. In addition, watermixed into the underlying mantle is probablyresponsible for the low-viscositylayer, or asthenosphere, on which Earth’slithospheric plates slide. Theformation of carbonate minerals and theirsubsequent descent on tectonic platesprevent carbon dioxide from building up.Models of planet formation predict thatthe two worlds should have been endowedwith roughly equal amounts of water,delivered by the impact of icy bodies fromthe outer solar system. But, when thePioneer Venus mission went into orbit in1978, it measured the ratio ofdeuterium to ordinary hydrogen within the waterof Venus’s clouds. The ratio wasan astonishing 150times the terrestrial value.The most likely explanation isthat Venus once had far more water and lost it.When water vapor drifted intothe upper atmosphere, solar ultraviolet radiationdecomposed it into oxygen andeither hydrogen or deuterium. Because hydrogen,being lighter, escapes to spacemore easily, the relative amount of deuteriumincreased. Why did this processoccur on Venus but not on Earth? In 1969 AndrewP. Ingersoll of the CaliforniaInstitute of Technology showed that if the solarenergy available to a planetwere strong enough, any water at the surface wouldrapidly evaporate. The addedwater vapor would further heat the atmosphere andset up what he called therunaway greenhouse effect. The process wouldtransport the bulk of the planet’swater into the upper atmosphere, where itwould ultimately be decomposed andlost. Later James F. Kasting of PennsylvaniaState University and his co-workersdeveloped a more detailed model of thiseffect. They estimated that the criticalsolar flux required to initiate arunaway greenhouse was about 40 percent largerthan the present flux on Earth.This value corresponds roughly to the solar fluxexpected at the orbit of Venusshortly after it was formed, when the sun was 30percent fainter. An Earthocean’s worth of water could have fled Venus in thefirst 30 million years ofits existence. A shortcoming of this model is that ifVenus had a thick carbondioxide atmosphere early on, as it does now, it would haveretained much of itswater. The amount of water that is lost depends on how muchof it can rise highenough to be decomposed—which is less for a planet with athick atmosphere.Furthermore, any clouds that developed during the processwould have reflectedsunlight back into space and shut off the runawaygreenhouse. So Kasting’sgroup also considered a solar flux slightly below thecritical value. In thisscenario, Venus had hot oceans and a humid stratosphere.The seas kept levelsof carbon dioxide low by dissolving the gas and promotingcarbonate formation.With lubrication from water in the asthenosphere, platetectonics might haveoperated. In short, Venus possessed climate-stabilizingmechanisms similar tothose on Earth today. But the atmosphere’s lower densitycould not preventwater from diffusing to high altitudes. Over 600 millionyears, an ocean’sworth of water vanished. Any plate tectonics shut down,leaving volcanism andheat conduction as the interior’s ways to cool. Thereaftercarbon dioxideaccumulated in the air.
This picture, termed the moistgreenhouse, illustrates the intricate interactionof solar, climate and geologicchange. Atmospheric and surface processes canpreserve the status quo, or theycan conspire in their own destruction. If thetheory is right, Venus once hadoceans—perhaps even life, although it may beimpossible to know.