通过设计新型蛋白质来解决5大挑战
日期:2019-09-21 13:42

(单词翻译:单击)

 MP3点击下载

I'm going to tell you about the most amazing machines in the world and what we can now do with them.
我想要向你们分享的是世界上最惊奇的机理,以及我们现在能用它们做些什么。
Proteins, some of which you see inside a cell here, carry out essentially all the important functions in our bodies.
蛋白质,你能在这个细胞中见到它,基本上负责运行我们身体中所有重要的功能。
Proteins digest your food, contract your muscles, fire your neurons and power your immune system.
蛋白质能帮助你消化食物,收缩你的肌肉,激发你的神经元,以及为你的免疫系统提供能量。
Everything that happens in biology -- almost -- happens because of proteins.
在生物学上,发生的一切--几乎一切--归功于蛋白质。
Proteins are linear chains of building blocks called amino acids.
蛋白质是线性链,其组件就是氨基酸。
Nature uses an alphabet of 20 amino acids, some of which have names you may have heard of.
大自然使用了20个氨基酸组成的字母表,其中的一些名称你或许听说过。
In this picture, for scale, each bump is an atom.
在这张图片中,按比例,每个凸起都是一个原子。
Chemical forces between the amino acids cause these long stringy molecules to fold up into unique, three-dimensional structures.
氨基酸之间的化学作用力会导致这些长而细的分子折叠成独一无二的三维结构。
The folding process, while it looks random, is in fact very precise.
折叠变化的过程,虽然看似随机,但实际上非常精确。
Each protein folds to its characteristic shape each time, and the folding process takes just a fraction of a second.
每个蛋白质每次都会折叠成它的特有形状,以及整个折叠的过程仅一秒都不到。
And it's the shapes of proteins which enable them to carry out their remarkable biological functions.
而蛋白质的形状使它们能够产生非凡的生物功能。
For example, hemoglobin has a shape in the lungs perfectly suited for binding a molecule of oxygen.
例如,血红蛋白在肺部的形状非常适合用于结合氧分子。
When hemoglobin moves to your muscle, the shape changes slightly and the oxygen comes out.
当血红蛋白进入你的肌肉时,形状会略有改变,氧气随之释放。
The shapes of proteins, and hence their remarkable functions,
蛋白质的形状,以及由此产生的非凡功能,
are completely specified by the sequence of amino acids in the protein chain.
完全由蛋白质链中的氨基酸序列决定。
In this picture, each letter on top is an amino acid.
在这张图片中,上面的每个字母都代表着一种氨基酸。
Where do these sequences come from?
这些序列又是从哪里来的呢?
The genes in your genome specify the amino acid sequences of your proteins.
你基因组中的基因决定了你的蛋白质分子的氨基酸序列。
Each gene encodes the amino acid sequence of a single protein.
每个基因编码形成一个蛋白质的氨基酸序列。
The translation between these amino acid sequences and the structures and functions of proteins is known as the protein folding problem.
这些氨基酸序列和结构之间的转换以及蛋白质的功能被称为蛋白质分子折叠问题。
It's a very hard problem because there's so many different shapes a protein can adopt.
这是一个非常复杂的问题,因为一个蛋白质分子有太多不同的形状可以采用。
Because of this complexity, humans have only been able to harness the power of proteins
因为其复杂性,人类只能通过利用蛋白质的力量,
by making very small changes to the amino acid sequences of the proteins we've found in nature.
通过对我们在自然界中发现的蛋白质的氨基酸序列进行微小调整。
This is similar to the process that our Stone Age ancestors
这类似于我们石器时代的祖先
used to make tools and other implements from the sticks and stones that we found in the world around us.
用我们在周围世界发现的木棍和石头制造工具和其他器械的过程。
But humans did not learn to fly by modifying birds.
但人类从未通过改造鸟类来学习飞行。
Instead, scientists, inspired by birds, uncovered the principles of aerodynamics.
相反,科学家们受鸟类启发揭示了空气动力学的原理。
Engineers then used those principles to design custom flying machines.
然后,工程师们利用这些原理来设计定制的飞行器。
In a similar way, we've been working for a number of years
以同样的方式,通过多年的研究,
to uncover the fundamental principles of protein folding and encoding those principles in the computer program called Rosetta.
我们已经揭示蛋白质折叠的基本原理,把这些原理编码在一个叫Rosetta的计算机程序中。
We made a breakthrough in recent years. We can now design completely new proteins from scratch on the computer.
近年来,我们取得了突破,我们现在可以在电脑上,从头开始设计全新的蛋白质。
Once we've designed the new protein, we encode its amino acid sequence in a synthetic gene.
一旦我们设计出新型的蛋白质,我们把它的氨基酸序列编码在一个合成基因中。
We have to make a synthetic gene because since the protein is completely new,
我们必须合成基因,因为蛋白质是全新的,
there's no gene in any organism on earth which currently exists that encodes it.
地球上任何现存的生物中都不存在能够编码它的基因。
Our advances in understanding protein folding and how to design proteins,
蛋白质折叠的研究进展以及如何设计新型蛋白质,
coupled with the decreasing cost of gene synthesis and the Moore's law increase in computing power,
再加上基因合成成本的降低和摩尔定律提高了的计算机能力,
now enable us to design tens of thousands of new proteins,
这些都让我们现在能够设计数万种新型蛋白质,
with new shapes and new functions, on the computer, and encode each one of those in a synthetic gene.
它们有着新的形状以及新的功能,在电脑上,并编码合成基因中的每一个分子。
Once we have those synthetic genes, we put them into bacteria to program them to make these brand-new proteins.
一旦我们有了这些合成基因,我们把它们放进细菌中,让它们制造出全新的蛋白质。
We then extract the proteins and determine whether they function as we designed them to and whether they're safe.
然后我们提取这些蛋白质,并确定它们是否就像我们设想的那样起作用,以及它们是否安全。
It's exciting to be able to make new proteins,
能制造出新型蛋白质真的很令人激动,
because despite the diversity in nature, evolution has only sampled a tiny fraction of the total number of proteins possible.
因为尽管大自然极具多样性,自然界的进化过程只产生了可能生成蛋白质总量的一小部分。
I told you that nature uses an alphabet of 20 amino acids, and a typical protein is a chain of about 100 amino acids,
之前提到,大自然使用20个氨基酸组成的字母表,一个标准的蛋白质是由100个氨基酸组成的链,
so the total number of possibilities is 20 times 20 times 20, 100 times,
所以总的可能性是20x20x20,这样重复一百次,
which is a number on the order of 10 to the 130th power,
这是一个10的130次方的数字,
which is enormously more than the total number of proteins which have existed since life on earth began.
这远远超过了地球生命伊始时存在的蛋白质的总数。

通过设计新型蛋白质来解决5大挑战

And it's this unimaginably large space we can now explore using computational protein design.
而且它是一个难以想象的大空间,我们现在可以通过计算机蛋白质设计进行探索。
Now the proteins that exist on earth evolved to solve the problems faced by natural evolution.
现在地球上存在的蛋白质自行进化来面对大自然进化所产生的问题。
For example, replicating the genome. But we face new challenges today.
例如,再生基因组。但现今我们面临着各种新的挑战。
We live longer, so new diseases are important.
人类的寿命正在延长,所以应对新的疾病很重要。
We're heating up and polluting the planet, so we face a whole host of ecological challenges.
我们的地球正面对着污染和全球变暖,因此,我们面临着一系列的生态挑战。
If we had a million years to wait, new proteins might evolve to solve those challenges.
如果我们还有一百万年可以等待,那么新的蛋白质或许会为我们解决这些挑战。
But we don't have millions of years to wait.
但是我们并没有一百万年可以等待。
Instead, with computational protein design, we can design new proteins to address these challenges today.
相反,通过计算机蛋白质设计,我们现在可以设计新型蛋白质来应对这些挑战。
Our audacious idea is to bring biology out of the Stone Age through technological revolution in protein design.
我们的大胆想法是把生物学带出石器时代,通过技术革命来设计新型蛋白质。
We've already shown that we can design new proteins with new shapes and functions.
我们已经证明我们可以设计出新的蛋白质,有着新的形状及功能。
For example, vaccines work by stimulating your immune system to make a strong response against a pathogen.
例如,疫苗通过刺激你的免疫系统来发挥作用,让其做出强烈的反应对抗病原体。
To make better vaccines, we've designed protein particles to which we can fuse proteins from pathogens,
为了制造更好的疫苗,我们设计了蛋白质颗粒,我们可以从病原体中融合蛋白质,
like this blue protein here, from the respiratory virus RSV.
像这里的蓝色蛋白质,来自呼吸道病毒RSV。
To make vaccine candidates that are literally bristling with the viral protein,
为了制造真正充满病毒蛋白的候选疫苗,
we find that such vaccine candidates produce a much stronger immune response to the virus than any previous vaccines that have been tested.
我们发现这样的候选疫苗对病毒产生了比以往测试过的任何疫苗更强大的免疫反应。
This is important because RSV is currently one of the leading causes of infant mortality worldwide.
这一点很重要,因为RSV目前是全球婴儿死亡率的主要原因之一。
We've also designed new proteins to break down gluten in your stomach
我们还设计出了新型蛋白质来分解你胃里的麸质,
for celiac disease and other proteins to stimulate your immune system to fight cancer.
用以治疗乳糜泻,以及其他刺激免疫系统用以对抗癌症的蛋白质。
These advances are the beginning of the protein design revolution.
这些进展成效标志着蛋白质设计革命的开始。
We've been inspired by a previous technological revolution:
我们受到了先前技术革命的启发:
the digital revolution, which took place in large part due to advances in one place, Bell Laboratories.
数字革命,在很大程度上是受一个地方的推动,那就是贝尔实验室。
Bell Labs was a place with an open, collaborative environment, and was able to attract top talent from around the world.
贝尔实验室是一个开放、协作的环境,能够吸引到世界各地的顶尖人才。
And this led to a remarkable string of innovations
它领导了一系列非凡的创新,
the transistor, the laser, satellite communication and the foundations of the internet.
晶体管、激光器、卫星通信,以及互联网的基础。
Our goal is to build the Bell Laboratories of protein design.
我们的目标是建立能有助于蛋白质设计的贝尔实验室。
We are seeking to attract talented scientists from around the world to accelerate the protein design revolution,
我们正致力于吸引来自世界各地的天才科学家来加速蛋白质设计革命,
and we'll be focusing on five grand challenges.
我们将专注于应对5大挑战。
First, by taking proteins from flu strains from around the world
首先,从世界各地的流感菌株中提取蛋白质,
and putting them on top of the designed protein particles I showed you earlier,
把它们放置于设计好的蛋白质颗粒上,就像我之前展示的,
we aim to make a universal flu vaccine, one shot of which gives a lifetime of protection against the flu.
我们的目标是制造一种通用的流感疫苗,一次注射就可以起到终生预防流感的作用。
The ability to design...
设计的能力...
The ability to design new vaccines on the computer is important both to protect against natural flu epidemics
在计算机上设计新疫苗的能力对预防自然性流感的流行,
and, in addition, intentional acts of bioterrorism.
以及人为的生物恐怖主义都很重要。
Second, we're going far beyond nature's limited alphabet of just 20 amino acids
第二,我们要超越大自然有限的字母表,其中只有20种氨基酸,
to design new therapeutic candidates for conditions such as chronic pain, using an alphabet of thousands of amino acids.
转为使用由数千种氨基酸组成的字母表来为慢性疼痛等疾病设计新的治疗方案。
Third, we're building advanced delivery vehicles to target existing medications exactly where they need to go in the body.
第三,我们正在制造先进的药物输送载体,以使现有的药物能够精确定位体内的目标。
For example, chemotherapy to a tumor or gene therapies to the tissue where gene repair needs to take place.
例如,对肿瘤的化疗,或者对需要进行基因修复的组织进行基因治疗。
Fourth, we're designing smart therapeutics that can do calculations within the body
第四,我们正在设计能在体内进行计算的智能疗法,
and go far beyond current medicines, which are really blunt instruments.
远远超越当前医疗水平,现在我们使用的还是较为迟缓的仪器。
For example, to target a small subset of immune cells responsible for an autoimmune disorder,
例如,仅针对一小部分免疫细胞,这些免疫细胞是造成自身免疫紊乱的原因,
and distinguish them from the vast majority of healthy immune cells.
从而将其与大多数健康免疫细胞区分开来。
Finally, inspired by remarkable biological materials such as silk, abalone shell, tooth and others,
最后,受非凡生物材料的启发,如丝绸、鲍鱼壳、牙齿等,
we're designing new protein-based materials to address challenges in energy and ecological issues.
我们正在设计新型蛋白质材料,用以解决能源和生态问题方面的挑战。
To do all this, we're growing our institute.
为了实现这一切,我们正在发展我们的研究所。
We seek to attract energetic, talented and diverse scientists from around the world, at all career stages, to join us.
我们致力于吸引来自世界各地,处于任何职业生涯阶段的富有活力、才华横溢、多样性的科学人才们加入我们。
You can also participate in the protein design revolution through our online folding and design game, "Foldit."
您也可以加入蛋白质设计革命,通过我们的在线折叠和设计游戏,“Foldit”。
And through our distributed computing project, Rosetta@home, which you can join from your laptop or your Android smartphone.
还有我们的分布式网络计算项目Rosetta@home,您可以通过笔记本电脑或安卓智能手机获取。
Making the world a better place through protein design is my life's work.
通过蛋白质设计使世界变得更好是我一生的工作。
I'm so excited about what we can do together. I hope you'll join us, and thank you.
我很激动我们能够一同携手。我期待各位的加入,谢谢大家。

分享到