位置:首页 > SAT > SAT每日一题 > 正文
SAT官方每日一题附答案和解析[数学](2014年6月18日)
日期:2014-06-21 11:57

(单词翻译:单击)

每日一题

Mathematics>Standard Multiple Choice


Read the following SAT test question and then click on a button to select your answer.

f(2n) = 2f(n) for all integers n
f(4) = 4
If f is a defined for all positive integers n, and f satisfies the two conditions above, whichthe following could be the definitionf?

(A) f(n)= n-2
(B) f(n)= n
(C) f(n)= 2n
(D) f(n)= 4
(E) f(n)= (2n)-4


答案和解析

答案:B

解析:

If f(n) = n - 2, then f(4) = 4 - 2 = 2 != 4,so the second condition fails. If f(n) = 2n, then f(4) = 8!=4,so the second condition fails for this function also. The other three options satisfy f(4) = 4, so it remains to check whether they satisfy the first condition.
If n = 1, and f(n) = 4, then f(2n) = f(2) = 4 and 2f(1) = 2(4) = 8,so it is not true that f(2n)= 2f(n) for all integers n. This means that the function f(n) = 4 does not satisfy the first condition. If n = 1, and f(n) = 2n - 4, then f(2n) = f(2) = 2(2) - 4 = 0 and 2f(n) = 2f(1) = 2( -2) = -4, so it is not true that f(2n) =2f(n) for all integers n. This means that the function f(n) = 2n - 4 does not satisfy the first condition.
However, if f(n) = n, then f (2n) = 2n = 2f (n),for all integers n. Also, f (4) = 4 • Therefore, the function f(n) = n is the only option that satisfies both conditions.

分享到
重点单词
  • definedadj. 有定义的,确定的;清晰的,轮廓分明的 v. 使
  • optionn. 选择权,可选物,优先购买权 v. 给予选择
  • multipleadj. 许多,多种多样的 n. 倍数,并联
  • functionn. 功能,函数,职务,重大聚会 vi. 运行,起作用
  • checkn. 检查,支票,账单,制止,阻止物,检验标准,方格图案