(单词翻译:单击)
Is teleportation possible?
远距传物会成为可能吗?
Could a baseball transform into something like a radio wave,
一个棒球是否有可能转变成一道电波,
travel through buildings, bounce around corners, and change back into a baseball?
穿过高楼,弹过转角,再变回原样吗?
Oddly enough, thanks to quantum mechanics, the answer might actually be yes. Sort of.
可能有些奇怪,多亏了量子力学,答案可能确实是“是”。可能吧。
Here's the trick. The baseball itself couldn't be sent by radio, but all the information about it could.
秘密在此。棒球本身不能被电波传输,但是它的所有信息可以。
In quantum physics, atoms and electrons are interpreted as a collection of distinct properties,
在量子物理中,原子和电子被解释成一族特性的集合,
for example, position, momentum, and intrinsic spin.
譬如位置、动量以及特征自旋。
The values of these properties configure the particle, giving it a quantum state identity.
这些特性的值确定了一个粒子,给了它量子态特征。
If two electrons have the same quantum state, they're identical.
如果两个电子有相同的量子态,那么它们就是相同的。
In a literal sense, our baseball is defined by a collective quantum state resulting from its many atoms.
字面意义上,棒球可以由形成它的原子的一系列量子态所确定。
If this quantum state information could be read in Boston and sent around the world,
如果可以再波士顿读取这量子态信息,并且将它发往全世界,
atoms for the same chemical elements could have this information imprinted on them in Bangalore
那么在班加罗尔,拥有相同化学元素的原子可以接收,刻入这些信息,
and be carefully directed to assemble, becoming the exact same baseball.
被小心的组装,变成一模一样的棒球。
There's a wrinkle though. Quantum states aren't so easy to measure.
但这有一个问题。量子态不容易测量。
The uncertainty principle in quantum physics implies the position and momentum of a particle can't be measured at the same time.
量子物理中的不确定性原理说明不能同时测量一个粒子的位置和动量。
The simplest way to measure the exact position of an electron requires scattering a particle of light,
测量电子准确位置的最简单方法需要散布光的粒子,
a photon, from it, and collecting the light in a microscope.
即光子,并在显微镜下收集光子。
But that scattering changes the momentum of the electron in an unpredictable way.
但是这种散布以一种不可预测方式改变了电子的动量。
We lose all previous information about momentum.
我们失去了之前关于动量的全部信息。
In a sense, quantum information is fragile. Measuring the information changes it.
某种意义上来说,量子信息是脆弱的。测量这种信息会改变它。
So how can we transmit something we're not permitted to fully read without destroying it?
所以我们如何传输那些不能完全被我们读取的东西而不毁坏它呢?
The answer can be found in the strange phenomena of quantum entanglement.
可以在量子缠结的奇怪现象中找到答案。
Entanglement is an old mystery from the early days of quantum physics and it's still not entirely understood.
自量子物理形成以来,量子缠结就是古老的谜题,而且仍没有完全解释。
Entangling the spin of two electrons results in an influence that transcends distance.
缠结两个电子的自旋可以形成超过距离的影响。
Measuring the spin of the first electron determines what spin will measure for the second,
测量第一个电子的自旋决定第二个电子会测出什么样的自旋,
whether the two particles are a mile or a light year apart.
不论这两个粒子是距离一英里还是一光年。
Somehow, information about the first electron's quantum state, called a qubit of data,
然而,第一个电子的量子态信息,即一个量子位的数据,
influences its partner without transmission across the intervening space.
可以不通过中介传递影响另一个电子。
Einstein and his colleagues called this strange communcation spooky action at a distance.
爱因斯坦和他的同事称这种奇怪的通信为鬼魅似的远距作用。
While it does seem that entanglement between two particles
尽管似乎两粒子之间的缠结
helps transfer a qubit instantaneously across the space between them, there's a catch.
会于空间中在它们之间立刻传输一个量子位,但这中间有个问题。
This interaction must begin locally.
这种交互必须在很近的发生。
The two electrons must be entangled in close proximity before one of them is transported to a new site.
两个电子必须很近的进行缠结,然后其中一个才可以移到新的地方。
By itself, quantum entanglement isn't teleportation.
本身来看,量子缠结不是远距传物。
To complete the teleport, we need a digital message to help interpret the qubit at the receiving end.
为了完成远距传物,我们需要数字信息来帮助在接收端解读量子位。
Two bits of data created by measuring the first particle.
测量第一个粒子产生了两比特数据。
These digital bits must be transmitted by a classical channel that's limited by the speed of light, radio, microwaves, or perhaps fiberoptics.
这些数字比特必须通过传统渠道运输,受制于光速、电波、微波,还可能有光纤。
When we measure a particle for this digital message, we destroy its quantum information,
当我们为获得数字信息测量了一粒子,我们便破坏了它的量子信息,
which means the baseball must disappear from Boston for it to teleport to Bangalore.
这意味着棒球必须在波士顿消失,才能被远距传物到班加罗尔。
Thanks to the uncertainty principle, teleportation transfers the information about the baseball between the two cities and never duplicates it.
多亏了不确定性原理,在两城市间可以远距传输棒球的信息,而且还不会重复它。
So in principle, we could teleport objects, even people, but at present,
所以理论上说,我们可以远距传输物体,甚至人类,但是在目前
it seems unlikely we can measure the quantum states of the trillion trillion or more atoms in large objects and then recreate them elsewhere.
我们还不太可能测量大型物体里面千千万万的原子的量子态,并且在别处复制它们。
The complexity of this task and the energy needed is astronomical.
这项任务的复杂程度和所需能量是天文级的。
For now, we can reliably teleport single electrons and atoms,
现在,我们可以有保障的远距传输单个电子和原子,
which may lead to super-secured data encryption for future quantum computers.
这会形成将来量子计算机的超级安全数据加密。
The philosophical implications of quantum teleportation are subtle.
量子传输的哲学内涵是微妙的。
A teleported object doesn't exactly transport across space like tangible matter,
远距传输的物体不像有形物体一样在空间中传输,
nor does it exactly transmit across space, like intangible information.
也不像无形信息一样在空间中传输。
It seems to do a little of both.
它看上去两者皆有。
Quantum physics gives us a strange new vision for all the matter in our universe as collections of fragile information.
量子物理给我们提供了一个奇怪的全新视角,即我们的宇宙中所有的物质都是脆弱信息的集合。
And quantum teleportation reveals new ways to influence this fragility. And remember, never say never.
而量子远距传输展示了新的方法来影响这种脆弱性。记住,永远不要说永不。
In a little over a century, mankind has advanced from an uncertain new understanding of the behavior of electrons at the atomic scale
通过一个多世纪,人类已经由在原子层面上对于电子行为不太确定的认识,
to reliably teleporting them across a room.
发展到可以在房间里可靠的远距传输它们。
What new technical mastery of such phenomena might we have in 1,000, or even 10,000 years?
在1000年,甚至10000年里,我们会见证对这种现象什么样的技术运用?
Only time and space will tell.
只有时间和空间会揭开答案。